Sparse Precision Matrix Estimation via Lasso Penalized D-Trace Loss
نویسندگان
چکیده
We introduce a constrained empirical loss minimization framework for estimating highdimensional sparse precision matrices and propose a new loss function, called the D-trace loss, for that purpose. A novel sparse precision matrix estimator is defined as the minimizer of the lasso penalized D-trace loss under a positive-definiteness constraint. Under a new irrepresentability condition, the lasso penalized D-trace estimator is shown to have the sparse recovery property. Examples demonstrate that the new condition can hold in situations where the irrepresentability condition for the lasso penalized Gaussian likelihood estimator fails. We establish rates of convergence for the new estimator in the elementwise maximum, Frobenius and operator norms. We develop a very efficient algorithm based on alternating direction methods for computing the proposed estimator. Simulated and real data are used to demonstrate the computational efficiency of our algorithm and the finite-sample performance of the new estimator. The lasso penalized D-trace estimator is found to compare favourably with the lasso penalized Gaussian likelihood estimator.
منابع مشابه
Estimation and Selection via Absolute Penalized Convex Minimization And Its Multistage Adaptive Applications
The ℓ1-penalized method, or the Lasso, has emerged as an important tool for the analysis of large data sets. Many important results have been obtained for the Lasso in linear regression which have led to a deeper understanding of high-dimensional statistical problems. In this article, we consider a class of weighted ℓ1-penalized estimators for convex loss functions of a general form, including ...
متن کاملA path following algorithm for Sparse Pseudo-Likelihood Inverse Covariance Estimation (SPLICE)
Given n observations of a p-dimensional random vector, the covariance matrix and its inverse (precision matrix) are needed in a wide range of applications. Sample covariance (e.g. its eigenstructure) can misbehave when p is comparable to the sample size n. Regularization is often used to mitigate the problem. In this paper, we proposed an `1 penalized pseudo-likelihood estimate for the inverse ...
متن کاملEstimation of Covariance Matrix via the Sparse Cholesky Factor with Lasso
In this paper, we discuss a parsimonious approach to estimation of high-dimensional covariance matrices via the modified Cholesky decomposition with lasso. Two different methods are proposed. They are the equiangular and equi-sparse methods. We use simulation to compare the performance of the proposed methods with others available in the literature, including the sample covariance matrix, the b...
متن کاملVariable Selection for High Dimensional Multivariate Outcomes.
We consider variable selection for high-dimensional multivariate regression using penalized likelihoods when the number of outcomes and the number of covariates might be large. To account for within-subject correlation, we consider variable selection when a working precision matrix is used and when the precision matrix is jointly estimated using a two-stage procedure. We show that under suitabl...
متن کاملAn R Package flare for High Dimensional Linear Regression and Precision Matrix Estimation
This paper describes an R package named flare, which implements a family of new high dimensional regression methods (LAD Lasso, SQRT Lasso, `q Lasso, and Dantzig selector) and their extensions to sparse precision matrix estimation (TIGER and CLIME). These methods exploit different nonsmooth loss functions to gain modeling flexibility, estimation robustness, and tuning insensitiveness. The devel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013